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Abstract

A model-free theoretical framework for a phenomenological description of spin-lattice relaxation by anomalous translational
diffusion in inhomogeneous systems based on the fractional diffusion equation is developed. The dependence of the spin-lattice relax-
ation time on the size of the pores in porous glass Vycor is experimentally obtained and found to agree well with our theoretical
predictions. We obtain nonmonotonic behavior of the translational spin-lattice relaxation rate constant (it passes through a max-
imum) with the variation of the parameter referring to the extent of inhomogeneity of the system.
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1. Introduction

Anomalous diffusion processes in randomly disor-
dered media are of considerable interest at present (see
[1] and references therein). The list of examples includes,
glasses and supercooled liquids [2], porous [3-5], percola-
tive [6-8], polymeric [9], and diffusive [10] systems, etc.
One of the powerful methods for investigation of such
processes is that of nuclear magnetic resonance (NMR)
diffusometry [3]. The latter was successfully applied to
the systems listed above [3-9]. The theory of NMR dif-
fusometry in disordered media [4,8] is developed within
the framework of a modern approach to anomalous dif-
fusion [1] invoking the so-called fractional calculus [11].

The aim of the present paper is to report the experi-
mental results on spin-lattice relaxation time in porous
glass Vycor with molecules of hexane as a diffusion tra-
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cer and to compare them with phenomenological gener-
alization of the theory of spin-lattice relaxation in
homogeneous media for the case of inhomogeneous one.

A modern description of anomalous diffusion pro-
cesses in disordered (e.g., porous) media makes use of
the so-called fractional diffusion equation (FDE). The
idea of this approach goes back to many pioneers whose
achievements are honored in the review article [1]. The
reason for introducing this equation is as follows. As
is well known the mean squared displacement of a free
particle in a homogeneous media increases linearly with
time (x*(1)) ~ C,t, where C, is the diffusion coefficient
with the dimension cm?/s. This conventional Einstein
relationship of the classical theory results from the or-
dinary diffusion equation for the probability density
function to find the particle at position x at time ¢z and
is a direct consequence of the Fick’s second law. In the
case of an inhomogeneous media a disorder (like e.g.,
obstacles caused by walls of pores in a porous materials)
leads to a slower increase of the mean squared displace-
ment with time

@) ~ 1, (1)
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where C, is the diffusion coefficient with the dimension
cm?/s* and 0 <« < 1 is a phenomenological parameter
characterizing the extent of inhomogeneity. Such behav-
ior is called sub-diffusion and it originates in any fractal
media due to the presence of dead ends on current ways.
It should be stressed that the departure from the classi-
cal theory is of fundamental character and the latter
relationship cannot be reduced to the former one by
simple scaling of time and diffusion coefficient. The most
straightforward way to obtain mathematically sub-diffu-
sion is to generalize the ordinary diffusion equation by
replacing the ordinary derivative in time by the frac-
tional one of the order «. The resulting FDE is a conve-
nient mathematical tool although a phenomenological
one since there is no lucid and commonly accepted phys-
ical meaning of a fractional derivative at present. Some
theoretical motivation for introducing the FDE arises
from its intrinsic relationship with the so-called contin-
uous time random walk theory. In fact, the FDE can
be derived from a generalized Langevin equation with
the memory kernel accounting for a power-law waiting
time statistics of the trapping events [1].

Much work is being carried out at present to verify
experimentally the predictions of the approach based
on the FDE [4,8,10]. As is emphasized in the papers
[4,8] NMR microscopy enabled the authors to verify
the anomalous solutions of the FDE for the first time.
The results of these work are compatible with other ap-
proaches to NMR relaxation in porous media [28,29].
However, the fact that the authors of [4,8] resort to a
one-dimensional fractional counterpart of the ordinary
diffusion equation makes their theoretical calculations
essentially of qualitative character and leaves room for
further advances. The present paper is a development
along this line. We resort to a three-dimensional FDE
and obtain stringent quantitative relationship of the
spin-lattice relaxation rate constant with the parameters
(« and C,) of the FDE. Our results provide new and use-
ful analytical tool to interpret the manifestation of
anomalous translational diffusion in NMR relaxation
which is substantiated by the obtained experimental
data.

The matter of NMR relaxation at diffusion through a
pore is of particular significance for biological systems.
According to a widely accepted point of view, one of
the ways of molecule penetration through a biological
membrane is associated with the short-lived and long-
lived pores with a diameter of several Angstroms [12].
Such pores are identified with proteins—aquaporins re-
vealed in cellular membranes of various organisms
[13,14]. In that case, the water molecules can move only
one by one according to the so-called single file diffu-
sion. Such pores seem to be mostly suitable for provid-
ing selection and thin regulation of the transfer but the
question about their reality and peculiarities of their
functioning still remains a matter of discussion.

At present the dynamics of molecules of liquids in
porous systems attracts considerable attention with an
accent on the questions of multi-dimensionality of the
diffusion and the existence of bound motion [15,16].
The diffusion of water in pores with a diameter compa-
rable with that of water molecules is studied by molecu-
lar dynamics [17-20]. In [18], it is shown that fluid
mechanics (classical hydrodynamics) can be qualita-
tively extrapolated for the one by one motion of the
water molecules in pores with the diameter of 3A.
Water in a narrow pore retains the properties of liquid
state with the diffusion coefficient of approximately
70% of that in the bulk phase. In [19,20], it is shown that
water in narrow pores has the properties of a structured
liquid with angular and radial distributions and with the
diffusion coefficient comparable with that of the bulk
phase. According to the data of neutron diffraction spec-
troscopy, the characteristic time of passing of the water
molecule through the membrane is of order of 100 mks
[21] and thus finds itself within the time scale of the pro-
cesses amenable to NMR spectroscopy. It is reasonable
to expect that the constraint of the water molecules’ mo-
tion and their interaction with the walls of the pores
leads to peculiarities of magnetic relaxation of water.
Our final interest in transport processes in biological
membranes motivates the present attempt to consider
magnetic relaxation by translational diffusion in the
pores of much simpler object namely a porous glass.

Concluding Section 1, we would like to emphasize the
following fact. The FDE is much more adequate than
the ordinary diffusion equation for the description of
processes in inhomogeneous media but one has to pay
a hard cost for gained facilitiecs. Namely the diffusion
coefficient in the FDE acquires a functional dependence
on the phenomenological parameter o referring to the
extent of inhomogeneity. This dependence is not known
in general case and at present one can only guess some
trial possibilities for particular systems of interest. Be-
sides this diffusion coefficient acquires the unusual
dimension cm?/s* and thus has minimal crossing (only
at o =1) with the ordinary diffusion coefficient with
the dimension cm?/s which can be obtained by direct
measurements employing the existing scheme of
pulsed-field gradient NMR.

2. Results
2.1. Theory

The theory of spin-lattice relaxation by dipole—dipole
interaction initiated by Bloembergen, Purcell, and
Pound and developed by Torrey and Abragam is pre-
sented in [22]. The rate constant of spin-lattice relaxa-
tion 1/7; is decomposed into translational and
rotational parts
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l/Tl :(I/Tl)lrans+(l/T1)rot' (2)

To calculate this value theoretically one needs to know
the spectral density of the correlation function for
spherical harmonics. The relationship of the value of
the spectral density at a Larmor frequency w; with
the value of the contribution to the spin-lattice relaxa-
tion rate constant due to translational diffusion is of
the form
A2

(17 ) = L0 0) £ 52 G0}, 3)
where 7y is the gyromagnetic ratio of the nucleus, 7 is
their spin and 7% is the Planck constant. The spectral
densities are proportional to the function J(w) of
the spectral density: J(w) =32J(w) and J@(w) =
3% J(w). Thus, one actually needs to calculate the only
function J(w). The consideration of the spin-lattice
relaxation in homogeneous media due to diffusion
motion of the particles presented in [22] is based on
the ordinary diffusion equation for the probability
density.

How is the value of 1/T altered when we pass from a
homogeneous system to a disordered (e.g., porous) one?
One can expect that (1/7)ans iS Very sensitive to the ex-
tent of porosity in the whole range while (1/7}),o; be-
comes to feel the porosity only when the size of the
pores becomes commensurate with that of the mole-
cules, i.e., in a wide range of porosity it remains con-
stant. That is why namely the dependence of the value
(1/T})irans ON the extent of porosity is of interest for the-
oretical consideration in the present paper. We develop
the latter within the framework of a modern approach
to anomalous translational diffusion in disordered sys-
tems based on the FDE. The reason to resort to such
generalization of the ordinary diffusion equation for
the description of anomalous diffusion processes is sta-
ted in Section 1.

The generalization of the ordinary diffusion equation
within the fractional calculus was suggested by Schnei-
der and Wyss [23]

OP(7,t)
ot

where P(7,1) is the probability density function to find
the particle at position 7 at time #, V is the three-dimen-
sional Laplace operator, C,, denotes the fractional diffu-
sion constant with the dimension (cmz/s"‘) and D(l)f‘ is
the Riemann-Liouville fractional derivative of order
1—o and with lower limit 0+ which is defined via the fol-
lowing relationship [11]

D)) = i e [ =31 0) by 5

= C,(Dy;*V2P) (7, 1), 4)

where I'(x) is a gamma function. The solution of Eq. (4)
for the case of sub-diffusion 0 <o < 1 with the initial
condition P(7,0) = 6(7), where J(x) is a Dirac function

is obtained in [23] and expressed via the Fox’s function

[24-26]
(1,2)
(3/2,1>,<1,1))' (6)

P, 1) =

2
0 T

(2 e (4C r

s T[) o

The latter is defined as

e (z (a1, 41),-- -, (ap,Ap)> _ L / ds =)
(b1,B1),...,(by,B,) 2ni

where

n(s) = I]:I;":,F(b,- + Bis)[T-, (1 — a; — A;s) .
D@+ As) [T, T (1 = b; — Bys)

The nomenclature in the Fox’s function associated with
the vertical bar is explained via its explicit definition by
the contour integral. The requirements to the contour
path L are formulated in [24].

Now, we follow the algorithm of [22] (in what fol-
lows all corresponding results from [22] are obtained
as a particular case o« = 1 of the present approach). Un-
der 7 we denote the vector 7, — 7, connecting two iden-
tical molecules diffusing relative to each other rather
than the radius-vector of the molecule diffusing relative
to a fixed point. This leads only to the change of 4C,*
by 8C,t* in (6). Our aim is to calculate the correlation
function

0 N//T'z"*(f)((r)g),w(ﬂ)) 15 (0(2), ¢(1))

73

XP(;"—?(),ZL) d3l”o d3l", (7)

where N is the number of spins in 1 cm®, "0, 0)is a
spherical harmonic and * denotes complex conjugate.
To be more precise, we need the spectral density of the
correlation function G(¢) to calculate the spin-lattice
relaxation rate constant with the help of (2). At integra-
tion in (7) one should take into account that r and r
cannot be less than some limit value d—the least dis-
tance to which the molecules can approach to each
other. If the molecules are considered as spheres of the
radius a then d = 2a [22].

Making the Fourier transforming of the function
P(7 — 7o, t) with the mentioned above change of 4C,z*
by 8C,t* and literally repeating the manipulation of
[22] with spherical functions one obtains

4N © du 2 [*dR . [(uR
G(t):W i E[J%(u)}/o ?sm(?)

20 R (laa)
H12(8C9<t“ (3/2,1),(1,1))’ ®

where J,(x) is a Bessel function of order v and
R = |7 — 7| The integration can be fulfilled and yields
the expressions for both the correlation function and
its spectral density via Fox’s functions. However a Fox’s
function is to regret not tabulated at present either in
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Mathematica or Maple or Matlab. Thus, it is rather dif-
ficult to use such formulas for plotting the behavior of
the correlation function and the spectral density. That
is why it is useful to obtain another representation of
the spectral density which enables one to plot the fre-
quency dependence of this function. For this purpose
we make the Fourier transforming of the Fox function
in (8). The latter can be achieved with the help of the fol-
lowing trick going back to original investigations of
Fox. In [23] the Mellin transform of the Fox function

is given
{3tz <3/_2f117>(,x21, o)}

U N3\ =s/)
_°‘<(8CZ>‘/2> F(Z a) i) )

Now we make use of the identity [27]
Fe{f ()0} =M™ {T(s)cosZM{f(@): 1 =53}, (10)

where F denotes the cosine Fourier transform and M
denotes the Mellin transform which for our case is given
by formula (9). We denote the characteristic time

d2 1/a
Ty, = <2Ca> . (11)

As a result we obtain

Nzl o [ 2
J(w)=—2——sin— du|Js(u
@ = oy [l

u

X .
ut + (01,)* + 2u2(w1,)" cos

(12)

The integral in (12) can be easily calculated numerically.
We use Mathematica for this purpose. Formula (12) is
the main theoretical result of the present paper. This for-
mula is a direct generalization of the textbook result (see
e.g., [22] formula VIII.114) for the homogeneous case
o =1 for the case of arbitrary 0 <a < 1. The spectral
density is finite at wt, — 0 only for a =1. At all <1
it is power-law divergent in this limit.

2.2. Phenomenology

The predictions of the present theory are defined by
the dependence of the diffusion coefficient C, on the phe-
nomenological model parameter o referring to the extent
of inhomogeneity. This dependence is of most interest
because it characterizes the disordered media [1,8,10].
Its derivation is a separate and still open problem. It
should be a matter of a fundamental theory and is out
of the scope of the present paper. In our phenomenolog-
ical approach, we restrict ourselves by a model example.
As such we choose a particular behavior of the diffusion
coefficient

d (201
C,=—|—1, 13
2I () ( d ) (13)
where Cj is given by the Stokes formula
kgT
= . 14
! 6man (14)
Thus, the characteristic time is parameterized as
’L'uz’L']F(O()l/x, (15)
where
12na’y
U kT (16)

The behavior of the spectral density at several values of
the parameter o is depicted in Fig. 1. Substitution of
(12), (13), and (15) into (3) yields the normalized spin-
lattice relaxation rate constant

5dC,
———(1/Ty),,
a1 (1) /T (1)

= (w,11)" ' T(2) sin% /OOO du [J (u)ru

[

1
X
{u“ + (w,1) 7T (2)” + 22 (w,71)"T(20) cos %

2tX+1
+ 4 20 2 2 o o [ °
ut + (2op1) 7T ()" + 2u?(2w,7,) T’ () cos B
(17)
Its behavior on the parameter of inhomogeneity « at dif-

ferent values of w1, is depicted in Fig. 2. At experimen-
tally used Larmor frequency w;t;~ 0.015 the rate

J (w) d3
2N'E1_

~

-4 -3 -2 -1 1

log (wLTq)

Fig. 1. The dependence of the spectral density of the correlation
function for spherical harmonics due to anomalous translational
diffusion given by the (12) on the reduced Larmor frequency w;zt, at
different values of the parameter of inhomogeneity o. The values of the
latter parameter from the down line to the upper one respectively are:
1, 0.95, 0.9, and 0.85. Here N is the number of spins in 1 cm’, d is the
doubled radius of the molecules, 7, is the characteristic time for the
homogeneous media given by the (16) and t, is the characteristic time
for the inhomogeneous media given by the (15).
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Fig. 2. The dependence of the contribution to the spin-lattice
relaxation rate constant due to anomalous translational diffusion
given by the (17) on the parameter of inhomogeneity o at different
values of the reduced Larmor frequency w, ;. The values of the latter
parameter from the down line to the upper one respectively are: 1, 0.4,
0.16, 0.06, 0.025, and 0.01. Here N is the number of spins in 1 cm?, dis
the doubled radius of the molecules, C; is the diffusion coefficient for
the homogeneous media given by the Stokes formula (14), 7, is the
characteristic time for the homogeneous media given by the (16), y is
the gyromagnetic ratio of the nucleus, 7 is their spin, and 7% is the
Planck constant.

constant of spin-lattice relaxation has a maximum at
o~ 0.35 (with wyt, =~ 0.21).

2.3. Objects of investigation, experimental procedure, and
results

Porous glasses of the class ’Vycor,” with characteris-
tics presented in Table 1, were used as model samples of
porous media. There R is the size of glass microparticles,
p is the pore radius, S,,, and V,, are the pore specific sur-
face area and volume, respectively. The primary poros-
ity of these glasses is determined by the pore size p,
and the secondary one is determined by the glass micro-
particle size R.

In the experiment, hexane vapor was absorbed at the
temperature of 21 °C in the I1-shaped cell consisting of
two connected tubes with the inner diameter of 7 mm.
One tube was filled with a sample of porous glass to
the height of 12 mm, and into the other tube the liquid
hexane was poured. Hexane vapor absorption took
place in the presence of a certain amount of air. Prior
to cell soldering, the leg with porous glass was heated
at the temperature of 140 °C to remove water vapor.
The amount of the absorbed hexane was determined

Table 1
Characteristics of porous glasses

from the amplitude of free induction decay after the
90° radio frequency pulse. The calibrating of the signal
was carried out using the reference sample with the
known contents of protons. The process of absorption
consists of two stages. The first faster stage has the char-
acter of mono molecular absorption and is terminated at
the amount of absorbed molecules equal or close to the
amount necessary to form a mono molecular layer. The
second slow stage is associated with the capillary con-
densation, and lasts from 24 h (““Vycor 20”’) to a month
and a half (“Vycor 200”), and is accomplished by filling
the micropores. A good coincidence of calculated and
measured values of the amount of hexane, necessary to
fill completely the primary pores, is observed. Spin-lat-
tice relaxation times, 7, of absorbed hexane were
measured using a zero-method of the pulse sequence
180 °-90 ° on the coherent NMR relaxation meter using
protons at the frequency of 19.5 MHz. Taking the aver-
age size of a hexane moleculeasa =5A (d=2a=10A)
and its diffusion coefficient in bulk water as 4.17 x
107> cm?/s at room temperature we obtain 1, ~ 10719
and consequently w7, = 0.015.

The decay of the longitudinal magnetization of the
hexane in the region of full filling of the pores is one-
exponential for all porous glasses. As an example the

100

I9(A-A())

T T T T T T T T
0 500 1000 1500 2000
t, ms

Fig. 3. The experimental decay of the longitudinal magnetization for
hexane in the porous glass Vycor 160 with the radius of the pores
160 A. Solid line is the result of the linear fit of the data. Here 7 is the
current time of the magnetization’s relaxation, A4, is the equilibrium
value of the magnetization and A(¢) is the current value of the
magnetization.

Designations R (mm) p (A) £10% S, (m*/g) 5% V, (cm?/g) £5%
Vycor 20 0.1-0.3 20 200 0.2
Vycor 55 <0.05 55 254 0.7
Vycor 160 0.1-0.2 160 137.5 1.1
Vycor 220 0.1-0.3 220 118 1.3
Vycor 400 <0.1 400 25 0.5
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Fig. 4. The experimental dependence of the spin-lattice relaxation rate
constant on the reciprocal radius of the pores for the porous glasses
Vycor at the Larmor frequency 19.5 MHz. Here T is the spin-lattice
relaxation time and p is the radius of the pores measured in Angstroms
(10\). The solid line is an empirical fitted one “to guide the eye.”

decay of the longitudinal magnetization of the hexane in
the “Vycor 160 is presented in Fig. 3. The experimen-
tally observed spin-lattice relaxation times depending
on the inverse radius of the pores are plotted in Fig. 4.
One can see that with the variation of the pore size from
400 to 55 A the rate of longitudinal relaxation increases
and for p —20A it begins to decrease in accordance
with the prediction of the theory.

3. Discussion

Our theoretical approach is based on the FDE like
that of the papers [4,8]. However in these papers a one-
dimensional fractional counterpart of the ordinary diffu-
sion equation is employed to gain qualitative insight. In
contrast, we consider a three-dimensional one that en-
ables us to develop quantitative formalism. In our ap-
proach, we do not a priory assume any type and
character of the motion like e.g., quasi-two-dimensional
bulk mediated surface diffusion of the absorbed mole-
cules in the pores [4]. Our approach due to its phenome-
nological model-free character is flexible enough to
include formally such type of motion as a particular case.

Translational diffusion was previously taken into ac-
count within the so called reorientation mediated by
translational displacements model [3,4]. It is assumed
there that dipolar coupling responsible for the relaxation
mechanism is predominantly of an intramolecular nat-
ure, i.e., the fluctuations causing relaxation are exclu-
sively due to molecular reorientations [3]. In our
approach, we emphasize another facet of translational
diffusion manifesting itself in the intermolecular interac-
tions. We conceive the process as a bulk three-dimen-
sional diffusion in space with obstacles imposed by the
porous media. In our opinion the porosity of any extent

considerably manifests itself in the translational diffu-
sion. On the other hand it can affect rotational diffusion
appreciably only when the size of pores becomes com-
mensurate with that of the molecules. That is why the
value of (7)), 1s independent on the size of the pores
in a wide range of the extent of porosity while (77)irans
is very sensitive to this parameter. The latter value char-
acterizes the porosity of the system and is of main inter-
est in the present paper.

The most important feature of the spectral density
(12) which distinguishes it in the general case from the
particular one o = 1 considered in [22] is the divergence
of the spectral density at low frequencies (see Fig. 1).
Our phenomenological model-free approach can be
compared with that based on a molecular model of the
porous system [28]. Fig. 1 is qualitatively similar to
Fig. 2 from [28]. However, there are significant quantita-
tive distinctions between two approaches. The authors
of [28] obtain a logarithmic divergence of the spectral
density at low frequencies while we obtain a power-
law one. Our result agrees with the conclusions of the
papers [4,29], where a power-law divergence 1/T; < 1/
o” at low frequencies is reported. However, the authors
of these papers conclude that the proton relaxation pro-
cess is mainly due to intramolecular dipolar interaction
while we explore the range of inhomogeneity (particu-
larly porosity) of the system where in our opinion inter-
molecular interactions of molecules determine the
dependence of the relaxation rate constant on transla-
tional diffusion process.

It is known that a confinement enhances significantly
both spin-lattice and spin—spin relaxation rate constants
and alters their frequency and temperature dependencies
(see [28] and references to previous works of its authors).
In these papers, a monotonic behavior of the spin-lattice
relaxation rate constant (1/T)e<1/p or 1/Ty e 1/p?
where p is the average pore size) is reported. In contrast
we obtain nonmonotonic behavior of the translational
spin-lattice relaxation time with the variation of the
parameter o referring to the extent of inhomogeneity
(or that of porosity, namely the size of the pores) with
o = 1 corresponding to the case of homogeneous system.
We find that at a given temperature there is an optimal
porosity for maximal spin-lattice relaxation rate con-
stant. Such behavior is determined by contribution from
translational diffusion. For experimentally used Larmor
frequency wyt; = 0.01 and for a particular model depen-
dence of the fractional diffusion coefficient on the
parameter of inhomogeneity the rate constant of relaxa-
tion first increases with the decrease of o then passes
through a maximum at w;t, ~ 0.1 and finally sharply
decreases. The reason for such behavior is quite similar
to that for ordinary diffusion in a homogeneous system
with the variation of temperature. In the latter case, the
characteristic time t;(7) is a function of temperature and
the rate constant of spin-lattice relaxation has a maxi-
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mum at some temperature, where w;7; ~ 1. For inho-
mogeneous systems, the characteristic time 7,(7,%) be-
sides temperature is a function of the parameter of
inhomogeneity o and the variation of the latter (e.g.,
that of the porosity of the system) at constant tempera-
ture leads to a maximum of the spin-lattice relaxation
rate constant at some «. However, this maximum in gen-
eral case exists at w7z, different from 1.

4. Conclusions

A generalization of the ordinary diffusion equation
within the framework of the fractional calculus provides
natural phenomenological generalization of the theory of
spin-lattice NMR relaxation in homogeneous systems for
the case of the inhomogeneous ones. This development is
carried out within a general modern trend to extend the
theory of Gaussian translational diffusion in homoge-
neous systems for the case of anomalous diffusion in dis-
ordered (e.g., porous) systems by making use of the
fractional diffusion equation. The translational contribu-
tion into spin-lattice relaxation time is found to be highly
sensitive to the extent of inhomogeneity. It exhibits non-
monotonic behavior with the variation of the parameter o
referring to the extent of inhomogeneity (with o = 1 cor-
responding to the case of a homogeneous and isotropic
system and o = 0 corresponding to that of an absolutely
inhomogeneous one). The rate constant of relaxation
passes through a maximum with the decrease of «. For
experimentally used Larmor frequency w;t; ~0.015
and for a particular model dependence of the fractional
diffusion coefficient on the parameter of inhomogeneity
the maximum is at o =~ 0.35 (w1, =~ 0.21). One can con-
clude that the present work provides a reliable theoretical
framework for the analysis of anomalous translational
diffusion processes by NMR microscopy.

We obtain the explicit dependence of the rate con-
stant of spin-lattice relaxation by anomalous transla-
tional diffusion on the parameter of inhomogeneity o
taking place in the fractional diffusion equation. For-
mula (12) is a direct generalization of the textbook result
(see e.g., formula VIII.114 in [22]) for the homogeneous
case oo = 1 for the case of arbitrary 0 < o < 1. Our calcu-
lations predict that there occur a maximum of the relax-
ation rate constant at varying this parameter. We carry
out experimental measurements of the relaxation rate
constant in porous glass Vycor and obtain data which
agree well with our theoretical findings.
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